Thrita

Published by: Kowsar

Bioremediation of The Crude Oil Contamination of Soil by The Indigenous, Herbaceous Plant Salicorniaeuropea in Iran

Fereshteh Ghazisaeedi 1 , Mohammad Mahdi Zamani 1 , 2 , Sajjad Ghadbeigi 3 , Seyedeh Hamideh Mortazavi 1 , Malihe Fallahpour 4 , Hamed Ghazisaidi 5 , Mahsa Zamani 6 , Azam Bakhtiarian 2 , Nayer Azam Khoshkholgh Sima 7 and Mohsen Amini 3 , *
Authors Information
1 Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
2 Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
3 Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Science, Tehran, IR Iran
4 EvironmentFaculty, University of Tehran, Tehran, IR Iran
5 Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, Canada
6 Department of Management, Payame Noor University, Alborz, IR Iran
7 Agricultural Biotechnology Research Institute of Iran, Seed and Plant Improvement Institute Campus, Alborz, IR Iran
Article information
  • Thrita: June 01, 2014, 3 (2); e17409
  • Published Online: June 25, 2014
  • Article Type: Research Article
  • Received: January 11, 2014
  • Revised: February 10, 2014
  • Accepted: May 12, 2014
  • DOI: 10.5812/thrita.17409

To Cite: Ghazisaeedi F, Zamani M M, Ghadbeigi S, Mortazavi S H, Fallahpour M, et al. Bioremediation of The Crude Oil Contamination of Soil by The Indigenous, Herbaceous Plant Salicorniaeuropea in Iran, Thrita. 2014 ;3(2):e17409. doi: 10.5812/thrita.17409.

Abstract
Copyright © 2014, Thrita. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Material and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Gunawardena J, Egodawatta P, Ayoko GA, Goonetilleke A. Role of traffic in atmospheric accumulation of heavy metals and polycyclic aromatic hydrocarbons. Atmos Environ. 2012; 54: 502-10[DOI]
  • 2. Leung KM, Merrington G, Warne MS, Wenning RJ. Scientific derivation of environmental quality benchmarks for the protection of aquatic ecosystems: challenges and opportunities. Environ Sci Pollut Res Int. 2014; 21(1): 1-5[DOI][PubMed]
  • 3. Verdin A, Lounes-Hadj Sahraoui A, Newsam R, Robinson G, Durand R. Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environ Pollut. 2005; 133(2): 283-91[DOI][PubMed]
  • 4. Parrish ZD, White JC, Isleyen M, Gent MP, Iannucci-Berger W, Eitzer BD, et al. Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere. 2006; 64(4): 609-18[DOI][PubMed]
  • 5. Liguori L, Heggstad K, Hove HT, Julshamn K. An automated extraction approach for isolation of 24 polyaromatic hydrocarbons (PAHs) from various marine matrixes. Anal Chim Acta. 2006; 573-574: 181-8[DOI][PubMed]
  • 6. Shuttleworth KL, Cerniglia CE. Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol. 1995; 54(1-3): 291-302[PubMed]
  • 7. Zamani MM, Mortazavi SH, Aligholi M, Mahmoud Janlou H, Khodi Aghmiuni S, Pormasjedi-Meibod MS, et al. Native Bacterial Mixed Culture: A Proportionate Solution for Refinery and Petrochemical Wastewaters. Thrita. 2012; 1(4): 149-54[DOI]
  • 8. Meudec A, Dussauze J, Deslandes E, Poupart N. Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum-polluted sediments. Chemosphere. 2006; 65(3): 474-81[DOI][PubMed]
  • 9. Dierschke J, Bairlein F. Habitat selection of wintering passerines in salt marshes of the German Wadden Sea. J Ornithol. 2004; 145(1): 48-58[DOI]
  • 10. Victor Wu Y, Sessa DJ. Protein fractionation and properties of salicornia meal. J Am Oil Chem Soc. 2004; 81(2): 173-6[DOI]
  • 11. Ullrich SM, Ilyushchenko MA, Tanton TW, Uskov GA. Mercury contamination in the vicinity of a derelict chlor-alkali plant Part II: contamination of the aquatic and terrestrial food chain and potential risks to the local population. Sci Total Environ. 2007; 381(1-3): 290-306[DOI][PubMed]
  • 12. Meudec A, Dussauze J, Jourdin M, Deslandes E, Poupart N. Gas chromatographic-mass spectrometric method for polycyclic aromatic hydrocarbon analysis in plant biota. J Chromatogr A. 2006; 1108(2): 240-7[DOI][PubMed]
  • 13. Bianciotto OA, Pinedo LB, San Roman NA, Blessio AY, Collantes MB. The effect of natural UV-B radiation on a perennial Salicornia salt-marsh in Bahia San Sebastian, Tierra del Fuego, Argentina: a 3-year field study. J Photochem Photobiol B. 2003; 70(3): 177-85[PubMed]
  • 14. Zouboulis AI, Katsoyiannis IA. Recent advances in the bioremediation of arsenic-contaminated groundwater. Environ Int. 2005; 31(2): 213-9[DOI][PubMed]
  • 15. Efremenko EN, Azizov RE, Raeva AA, Abbasov VM, Varfolomeyev SD. An approach to the rapid control of oil spill bioremediation by bioluminescent method of intracellular ATP determination. Int Biodeter Biodegr. 2005; 56(2): 94-100[DOI]
  • 16. Watanabe K. Microorganisms relevant to bioremediation. Curr Opin Biotechnol. 2001; 12(3): 237-41[PubMed]
  • 17. Samanta SK, Singh OV, Jain RK. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 2002; 20(6): 243-8[PubMed]
  • 18. Cerniglia CE. Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol. 1997; 19(5-6): 324-33[PubMed]
  • 19. Newman LA, Reynolds CM. Phytodegradation of organic compounds. Curr Opin Biotechnol. 2004; 15(3): 225-30[DOI][PubMed]
  • 20. Ferrera-Cerrato R, Rojas-Avelizapa NG, Poggi-Varaldo HM, Alarcon A, Canizares-Villanueva RO. [Processes of bioremediation of soil and water which were contaminated by oil hydrocarbons and other organic substances]. Rev Latinoam Microbiol. 2006; 48(2): 179-87[PubMed]
  • 21. Rosso PH, Pushnik JC, Lay M, Ustin SL. Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environ Pollut. 2005; 137(2): 241-52[DOI][PubMed]
  • 22. Muratova A, Hubner T, Tischer S, Turkovskaya O, Moder M, Kuschk P. Plant--rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Int J Phytoremediation. 2003; 5(2): 137-51[DOI][PubMed]
  • 23. Lin ZQ, Cervinka V, Pickering IJ, Zayed A, Terry N. Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization. Water Res. 2002; 36(12): 3150-60[PubMed]
  • 24. Tikhomirova NA, Ushakova SA, Tikhomirov AA, Kalacheva GS, Gros JB. Possibility of Salicornia europaea use for the human liquid wastes inclusion into BLSS intrasystem mass exchange. Acta Astronaut. 2008; 63(7–10): 1106-10[DOI]
  • 25. Meudec A, Poupart N, Dussauze J, Deslandes E. Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis. Sci Total Environ. 2007; 381(1-3): 146-56[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments