Published by: Kowsar

Prolonged and Intermittent Bilateral Common Carotid Artery Occlusion Induces Brain Lipidome Changes in a Rat Stroke Model

Masoumeh Faezi 1 and Mohammad Reza Bigdeli 1 , *
Authors Information
1 Department of Physiology, Faculty of Biological Sciences, Shahid Beheshti University, G.C., Tehran, IR Iran
Article information
  • Thrita: June 01, 2016, 5 (2); e28771
  • Published Online: May 30, 2016
  • Article Type: Research Article
  • Received: March 17, 2015
  • Revised: November 17, 2015
  • Accepted: November 18, 2015
  • DOI: 10.5812/thrita.28771

To Cite: Faezi M, Bigdeli M R. Prolonged and Intermittent Bilateral Common Carotid Artery Occlusion Induces Brain Lipidome Changes in a Rat Stroke Model, Thrita. 2016 ;5(2):e28771. doi: 10.5812/thrita.28771.

Copyright © 2016, Thrita. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993; 72(6): 1293-9[PubMed]
  • 2. Shamloo M, Wieloch T. Changes in protein tyrosine phosphorylation in the rat brain after cerebral ischemia in a model of ischemic tolerance. J Cereb Blood Flow Metab. 1999; 19(2): 173-83[DOI][PubMed]
  • 3. Bigdeli MR, Rahnama M. Comparison between preconditioning with temporary middle cerebral artery occlusion and 3-Nitropropionic Acid on reduction of brain injuries in rat stroke model. Trauma Mon. 2011; 2011(2, Summer): 95-100
  • 4. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, et al. ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res. 1990; 528(1): 21-4[DOI][PubMed]
  • 5. Gorgias N, Maidatsi P, Tsolaki M, Alvanou A, Kiriazis G, Kaidoglou K, et al. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia. Brain Res. 1996; 714(1-2): 215-25[PubMed]
  • 6. Kato H, Liu Y, Araki T, Kogure K. MK-801, but not anisomycin, inhibits the induction of tolerance to ischemia in the gerbil hippocampus. Neurosci Lett. 1992; 139(1): 118-21[PubMed]
  • 7. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A. 1995; 92(10): 4666-70[PubMed]
  • 8. Drgova A, Likavcanova K, Dobrota D. Changes of phospholipid composition and superoxide dismutase activity during global brain ischemia and reperfusion in rats. Gen Physiol Biophys. 2004; 23(3): 337-46[PubMed]
  • 9. Iwasaki Y, Ito S, Suzuki M, Nagahori T, Yamamoto T, Konno H. Forebrain ischemia induced by temporary bilateral common carotid occlusion in normotensive rats. J Neurol Sci. 1989; 90(2): 155-65[PubMed]
  • 10. Eklof B, Siesjo BK. The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand. 1972; 86(2): 155-65[DOI][PubMed]
  • 11. Yanpallewar SU, Hota D, Rai S, Kumar M, Acharya SB. Nimodipine attenuates biochemical, behavioral and histopathological alterations induced by acute transient and long-term bilateral common carotid occlusion in rats. Pharmacol Res. 2004; 49(2): 143-50[PubMed]
  • 12. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20(1): 84-91[PubMed]
  • 13. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 1990; 10(2): 290-3[DOI][PubMed]
  • 14. Lei B, Popp S, Capuano-Waters C, Cottrell JE, Kass IS. Lidocaine attenuates apoptosis in the ischemic penumbra and reduces infarct size after transient focal cerebral ischemia in rats. Neuroscience. 2004; 125(3): 691-701[DOI][PubMed]
  • 15. Seyfried TN, Heinecke KA, Mantis JG, Denny CA. Brain lipid analysis in mice with Rett syndrome. Neurochem Res. 2009; 34(6): 1057-65[DOI][PubMed]
  • 16. Macala LJ, Yu RK, Ando S. Analysis of brain lipids by high performance thin-layer chromatography and densitometry. J Lipid Res. 1983; 24(9): 1243-50[PubMed]
  • 17. Kasperzyk JL, El-Abbadi MM, Hauser EC, D'Azzo A, Platt FM, Seyfried TN. N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J Neurochem. 2004; 89(3): 645-53[DOI][PubMed]
  • 18. Chen S, Cheung RTF. Peripheral and central administration of neuropeptide Y in a rat middle cerebral artery occlusion stroke model reduces cerebral blood flow and increases infarct volume. Brain Res. 2002; 927(2): 138-43[DOI][PubMed]
  • 19. Faezi M, Bigdeli MR, Mirzajani F, Ghasempour A. Normobaric Hyperoxia Preconditioning Induces Changes in the Brain Lipidome. Curr Neurovasc Res. 2015; 12(4): 353-62[PubMed]
  • 20. Adibhatla RM, HAtcher JF, Larsen EC, Chen X, Sun D, Tsao FH. Retraction: CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP: phosphocholine cytidylyltransferase after stroke. J Biol Chem. 2013; 288(11): 7549[DOI][PubMed]
  • 21. Bralet J, Beley P, Jemaa R, Bralet AM, Beley A. Lipid metabolism, cerebral metabolic rate, and some related enzyme activities after brain infarction in rats. Stroke. 1987; 18(2): 418-25[PubMed]
  • 22. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Nat Acad Sci. 2004; 101(7): 2070-5[DOI][PubMed]
  • 23. Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997; 272(17): 11369-77[PubMed]
  • 24. Schwarz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D, et al. High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res. 2008; 7(10): 4266-77[DOI][PubMed]
  • 25. Bigdeli MR. Neuroprotection caused by hyperoxia preconditioning in animal stroke models. ScientificWorldJournal. 2011; 11: 403-21[DOI][PubMed]
  • 26. Jaspers RMA, Block F, Heim C, Sontag KH. Spatial learning is affected by transient occlusion of common carotid arteries (2VO): Comparison of behavioural and histopathological changes after ‘2VO’ and ‘four-vessel-occlusion’ in rats. Neurosci Let. 1990; 117(1-2): 149-53[DOI][PubMed]
  • 27. Kato H, Kogure K, Nakata N, Araki T, Itoyama Y. Facilitated recovery from postischemic suppression of protein synthesis in the gerbil brain with ischemic tolerance. Brain Res Bul. 1995; 36(2): 205-8[DOI]
  • 28. Chavko M, Nemoto EM. Regional differences in rat brain lipids during global ischemia. Stroke. 1992; 23(7): 1000-4[PubMed]
  • 29. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem. 1992; 267(6): 3825-31[PubMed]
  • 30. Kurban S, Mehmetoglu I, Yilmaz G. Effect of diet oils on lipid levels of the brain of rats. Indian J Clin Biochem. 2007; 22(2): 44-7[DOI][PubMed]
  • 31. Olguner CG, Koca U, Altekin E, Ergur BU, Duru S, Girgin P, et al. Ischemic preconditioning attenuates lipid peroxidation and apoptosis in the cecal ligation and puncture model of sepsis. Exp Ther Med. 2013; 5(6): 1581-8[DOI][PubMed]
  • 32. Fraga CG, Leibovitz BE, Tappel AL. Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med. 1988; 4(3): 155-61[PubMed]
  • 33. Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 2001; 24(12): 719-25[PubMed]
  • 34. Farkas E, Luiten PG, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev. 2007; 54(1): 162-80[DOI][PubMed]
  • 35. Adibhatla RM, Hatcher JF, Dempsey RJ. Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke. 2001; 32(10): 2376-81[PubMed]
  • 36. Rao AM, Hatcher JF, Dempsey RJ. Lipid alterations in transient forebrain ischemia: possible new mechanisms of CDP-choline neuroprotection. J Neurochem. 2000; 75(6): 2528-35[PubMed]
  • 37. Adibhatla RM, Hatcher JF. Citicoline mechanisms and clinical efficacy in cerebral ischemia. J Neurosci Res. 2002; 70(2): 133-9[DOI][PubMed]
  • 38. Novgorodov SA, Gudz TI. Ceramide and mitochondria in ischemic brain injury. Int J Biochem Mol Biol. 2011; 2(4): 347-61[PubMed]
  • 39. DeGirolami U, Zivin JA. Neuropathology of experimental spinal cord ischemia in the rabbit. J Neuropathol Exp Neurol. 1982; 41(2): 129-49[PubMed]
  • 40. Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol. 1999; 58(7): 740-7[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments