Thrita

Published by: Kowsar

Comparative Erythrocyte Glutathione S-Transferase Activity Profile of Non-Malarious Guinea Pigs (Cavia tschudii) Administered Pyrimethamine/Sulfadoxine and Artemether/Lumefantrine Combination Therapies

Paul Chidoka Chikezie 1 , *
Author Information
1 Department of Biochemistry, Imo State University, Owerri, Nigeria
Article information
  • Thrita: December 01, 2014, 3 (4); e22246
  • Published Online: November 9, 2014
  • Article Type: Research Article
  • Received: July 22, 2014
  • Revised: September 29, 2014
  • Accepted: October 22, 2014
  • DOI: 10.5812/thrita.22246

To Cite: Chikezie P C. Comparative Erythrocyte Glutathione S-Transferase Activity Profile of Non-Malarious Guinea Pigs (Cavia tschudii) Administered Pyrimethamine/Sulfadoxine and Artemether/Lumefantrine Combination Therapies, Thrita. 2014 ;3(4):e22246. doi: 10.5812/thrita.22246.

Abstract
Copyright © 2014, Thrita. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
References
  • 1. Antimalarial drug combination therapy. Report of a Technical Consultation. 2001;
  • 2. Milhous WK, Weatherly NF, Bowdre JH, Desjardins RE. In vitro activities of and mechanisms of resistance to antifol antimalarial drugs. Antimicrob Agents Chemother. 1985; 27(4): 525-30[PubMed]
  • 3. Nzila A. Inhibitors of de novo folate enzymes in Plasmodium falciparum. Drug Discov Today. 2006; 11(19-20): 939-44[DOI][PubMed]
  • 4. Lefevre G, Bhad P, Jain JP, Kalluri S, Cheng Y, Dave H, et al. Evaluation of two novel tablet formulations of artemether-lumefantrine (Coartem) for bioequivalence in a randomized, open-label, two-period study. Malar J. 2013; 12: 312[DOI][PubMed]
  • 5. Bakshi R, Hermeling-Fritz I, Gathmann I, Alteri E. An integrated assessment of the clinical safety of artemether-lumefantrine: a new oral fixed-dose combination antimalarial drug. Trans R Soc Trop Med Hyg. 2000; 94(4): 419-24[PubMed]
  • 6. Tracy JW, Webster LT. Drugs used in the chemotherapy of protozoan infections. In: Goodman and Gilman's Pharmacological Basis of Therapeutics. 2001;
  • 7. Crespo-Ortiz MP, Wei MQ. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. 2012; 2012: 247597[DOI][PubMed]
  • 8. MacArthur JD. 2000;
  • 9. Sherratt PJ, Hayes JD. Enzyme Systems That Metabolise Drugs and Other Xenobiotics. 2001; : 319-52
  • 10. Ziglari T, Allameh A. The Significance of Glutathione Conjugation in Aflatoxin Metabolism. Aflatoxins-Recent. Advances and Future Prospects. 2013; [DOI]
  • 11. Gilliland FD, Li YF, Saxon A, Diaz-Sanchez D. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet. 2004; 363(9403): 119-25[DOI][PubMed]
  • 12. Primavera A, Fustinoni S, Biroccio A, Ballerini S, Urbani A, Bernardini S, et al. Glutathione transferases and glutathionylated hemoglobin in workers exposed to low doses of 1,3-butadiene. Cancer Epidemiol Biomarkers Prev. 2008; 17(11): 3004-12[DOI][PubMed]
  • 13. Noce A, Ferrannini M, Fabrini R, Bocedi A, Dessi M, Galli F, et al. Erythrocyte glutathione transferase: a new biomarker for hemodialysis adequacy, overcoming the Kt/V(urea) dogma? Cell Death Dis. 2012; 3[DOI][PubMed]
  • 14. Harvey JW, Beutler E. Binding of heme by glutathione S-transferase: a possible role of the erythrocyte enzyme. Blood. 1982; 60(5): 1227-30[PubMed]
  • 15. Awasthi YC, Singh SV. Purification and characterization of a new form of glutathione S-transferase from human erythrocytes. Biochem Biophys Res Commun. 1984; 125(3): 1053-60[PubMed]
  • 16. Hamza I, Dailey HA. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim Biophys Acta. 2012; 1823(9): 1617-32[DOI][PubMed]
  • 17. Takikawa H, Kaplowitz N. Comparison of the binding sites of GSH S-transferases of the Ya- and Yb-subunit classes: effect of glutathione on the binding of bile acids. J Lipid Res. 1988; 29(3): 279-86[PubMed]
  • 18. Ismert M, Oster T, Bagrel D. Effects of atmospheric exposure to naphthalene on xenobiotic-metabolising enzymes in the snail Helix aspersa. Chemosphere. 2002; 46(2): 273-80[PubMed]
  • 19. Ezeji EU, Anyalogbu EA, Ezejiofor TN, Udensi JU. Determination of reduced glutathione and glutathione S-transferase of poultry birds exposed to permethrin insecticide. Am J Biochem. 2012; 2(3): 21-4[DOI]
  • 20. Ibegbulem CO, Chikezie PC. Hypoglycemic properties of ethanolic extracts of Gongronema latifolium, Aloe perryi, Viscum album and Allium sativum administered to alloxan induced diabetic albino rats (Rattus norvegicus). J Biol Chem Res. 2012; 29(1): 16-25[DOI]
  • 21. Tsakiris S, Giannoulia-Karantana A, Simintzi I, Schulpis KH. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity. Pharmacol Res. 2006; 53(1): 1-5[DOI][PubMed]
  • 22. Chikezie PC. Comparative methaemoglobin concentrations of three erythrocyte genotypes (HbAA, HbAS and HbSS) of male participants administered with five antimalarial drugs. Afr J Biochem Res. 2009; 3(6): 266-71
  • 23. Chikezie PC. Glutathione S–transferase activity of human erythrocytes incubated in aqueous solution of five antimalarial drugs. Free Rad Antiox. 2011; 1(2): 25-9[DOI]
  • 24. Kalra VK, Sikka SC, Sethi GS. Transport of amino acids in gamma-glutamyl transpeptidase-implanted human erythrocytes. J Biol Chem. 1981; 256(11): 5567-71[PubMed]
  • 25. Galbraith DA, Watts DC. Changes in some cytoplasmic enzymes from red cells fractionated into age groups by centrifugation in Ficoll/Triosil gradients. Comparison of normal humans and patients with Duchenne muscular dystrophy. Biochem J. 1980; 191(1): 63-70[PubMed]
  • 26. Kamber E, Poyiagi A, Deliconstantinos G. Modifications in the activities of membrane-bound enzymes during in vivo ageing of human and rabbit erythrocytes. Comp Biochem Physiol B. 1984; 77(1): 95-9[PubMed]
  • 27. Baure JD. Gradwohl's Clinical Laboratory Methods and Diagnosis. 1980; : 809-902
  • 28. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974; 249(22): 7130-9[PubMed]
  • 29. Pasupathi P, Chandrasekar V, Kumar US. Evaluation of oxidative stress, antioxidant and thyroid hormone status in patients with diabetes mellitus. J Med. 2009; 10: 60-6[DOI]
  • 30. Romeu M, Nogues R, Marcas L, Sanchez-Martos V, Mulero M, Martinez-Vea A, et al. Evaluation of oxidative stress biomarkers in patients with chronic renal failure: a case control study. BMC Res Notes. 2010; 3: 20[DOI][PubMed]
  • 31. Goodrich JM, Basu N. Variants of glutathione s-transferase pi 1 exhibit differential enzymatic activity and inhibition by heavy metals. Toxicol In Vitro. 2012; 26(4): 630-5[DOI][PubMed]
  • 32. Comakli V, Ciftci M, Kufrevioglu O. Purification of glutathione S-transferase enzyme from rainbow trout erythrocytes and examination of the effects of certain antibiotics on enzyme activity. Hacettepe J Biol Chem. 2011; 39(4): 413–419
  • 33. Domingues I, Agra AR, Monaghan K, Soares AM, Nogueira AJ. Cholinesterase and glutathione-S-transferase activities in freshwater invertebrates as biomarkers to assess pesticide contamination. Environ Toxicol Chem. 2010; 29(1): 5-18[DOI][PubMed]
  • 34. Jemec A, Drobne D, Tisler T, Sepcic K. Biochemical biomarkers in environmental studies--lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environ Sci Pollut Res Int. 2010; 17(3): 571-81[DOI][PubMed]
  • 35. Valon M, Valbona A, Fahri G, Qenan M, Dhurat K, Fatmir C. Evaluating Environmental Pollution by Applying Oxidative Stress Biomarkers as Bioindicators of Water Pollution in Fish. Pol J Environ Stud. 2013; 22(5): 1519-23
  • 36. Ayalogu OE, Igboh NM, Dede EB. Biochemical Changes in the Serum and Liver of albino rats exposed to Petroleum Samples (gasoline, kerosene, and crude Petroleum). J Appl Sci Environ Manag. 2001; 5(1): 97-100
  • 37. Chiarpotto E, Biasi F, Scavazza A, Camandola S, Aragno M, Tamagno E, et al. Acetaldehyde involvement in ethanol-induced potentiation of rat hepatocyte damage due to the carcinogen 1,2-dibromoethane. Alcohol Alcohol. 1995; 30(6): 721-8[PubMed]
  • 38. Rathore N, John S, Kale M, Bhatnagar D. Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues. Pharmacol Res. 1998; 38(4): 297-303[DOI][PubMed]
  • 39. Anosike EO, Uwakwe AA, Monanu MO, Ekeke GI. Studies on human erythrocyte glutathione-S-transferase from HbAA, HbAS and HbSS subjects. Biomed Biochim Acta. 1991; 50(9): 1051-6[PubMed]
  • 40. Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol. 2011; 2011: 487074[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments